A Point Counting Algorithm Using Cohomology with Compact Support

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-quadratic elliptic curve point counting using rigid cohomology

We present a deterministic algorithm that computes the zeta function of a nonsupersingular elliptic curve E over a finite field with p elements in time quasi-quadratic in n. An older algorithm having the same time complexity uses the canonical lift of E, whereas our algorithm uses rigid cohomology combined with a deformation approach. An implementation in small odd characteristic turns out to g...

متن کامل

Rigid cohomology and p - adic point counting ∗

I consider the problem of computing the zeta function of an algebraic variety defined over a finite field. This problem has been pushed into the limelight in recent years because of its importance in cryptography, at least in the case of curves. Wan’s excellent survey article gives an overview of what has been achieved, and what remains to be done, on the topic [15]. The purpose of this exposit...

متن کامل

Rigid cohomology and p - adic point counting par

I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.

متن کامل

Rigid cohomology and p - adic point counting par ALAN

I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.

متن کامل

A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions

We present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. The complexity of the algorithm is O ( N(logN)2 ) , where N is the number of degrees of freedo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: LMS Journal of Computation and Mathematics

سال: 2009

ISSN: 1461-1570

DOI: 10.1112/s1461157000001534